

Space It Up!

SPOKE 7: SPACE FOR THE SUSTAINABLE DEVELOPMENT OF THE PLANET

Tutorial: urban monitoring and analysis with remote sensing and spatial information technology

Air Pollution

Tutors: Vasil Yordanov and Maria Antonia Brovelli Department of Civil and Environmental Engineering Politecnico di Milano

https://bit.ly/GSW_2025_AQ_slides

6th April 2025 | Geospatial Week 2025 | Dubai

GIS GEOlab Air Quality Team www.gisgeolab.polimi.it

Maria Antonia Brovelli Full Professor of GIS and Earth Observation Head of the Geomatics and Earth Observation laboratory (GEOlab)

Daniele Oxoli Assistant Professor (TT), PhD in Geomatics, Professor of Geospatial Data Processing and GIS

Vasil Yordanov Assistant Professor (Jr), PhD in National Security

Rodrigo Cedeno Postdoc researcher PhD in Geomatics

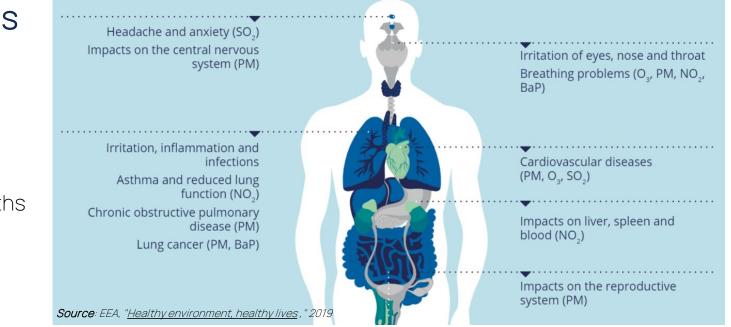
Contents

- 1. Introduction to Urban Air Quality and Remote Sensing
- 2. Overview of Satellite Missions and Data Repositories
- 3. Brief Introduction to Google Earth Engine
- 4. Hands-on GEE Session: Air Quality Assessment
- 5. Questions

Today's slides are here:

https://bit.ly/GSW 2025 AQ slides

Introduction to Urban Air Quality and Remote Sensing


Impact on Health:

- Air pollution causes respiratory diseases, cardiovascular issues, and premature deaths.
- WHO estimates that 7 million premature deaths annually are linked to air pollution.

Environmental Impacts:

- Decreased urban visibility (smog) and reduced sunlight.
- Contribution to climate change through aerosols and greenhouse gases.
- Harming forests, wildlife, and agriculture.

What are the WHO air quality guidelines?

- 99% of the world's population live in places where air pollution levels exceed WHO guideline limits.
- In 2022, 96% of the urban population was exposed to concentrations of fine particulate matter above the health-based guideline level set by the WHO.
- All EU countries reported levels of ozone and nitrogen dioxide above the health-based guideline levels set by the WHO.

The Challenge of Monitoring Urban Air Quality

What?

Gases

- Ozone (O3)
- Carbon Monoxide (CO)
- Nitrogen Dioxide (NO2)
- Sulfur Dioxide (SO2)
- Greenhouse Gases (CO2, Methane)
 Aerosols

Fine particulates (PM_{2.5}) Coarse particulates (PM₁₀)

How do we monitor?

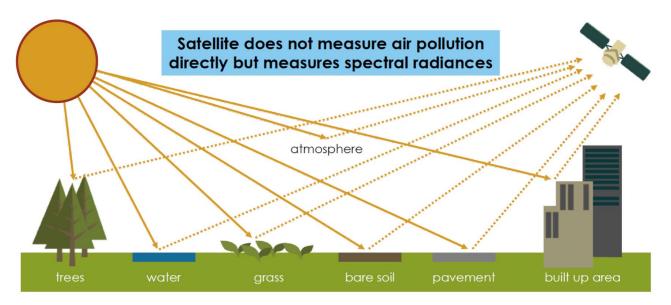
- Ground-based monitors
- Sensors networks
- Models statistical and physical
- Satellite remote sensing

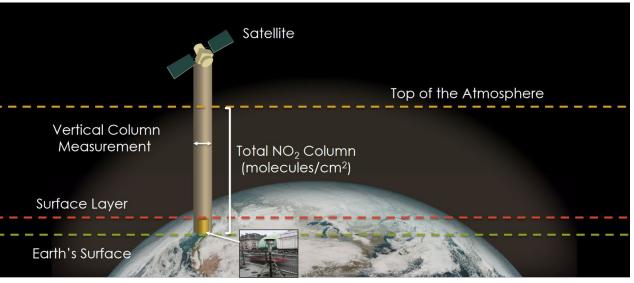
https://open.lib.umn.edu

https://www.universetoday.com/

Limitations

- Limited spatial coverage with ground-based stations.
- High cost of deployment and maintenance.
- Low-cost sensors increase monitor density but may be insufficient in heavily affected areas

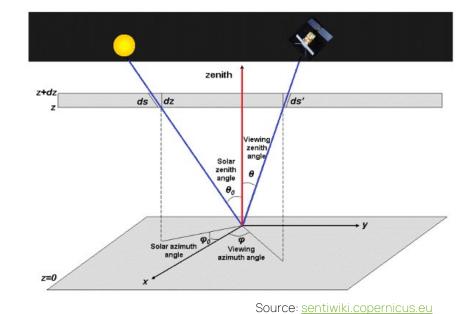

Remote Sensing as a Solution

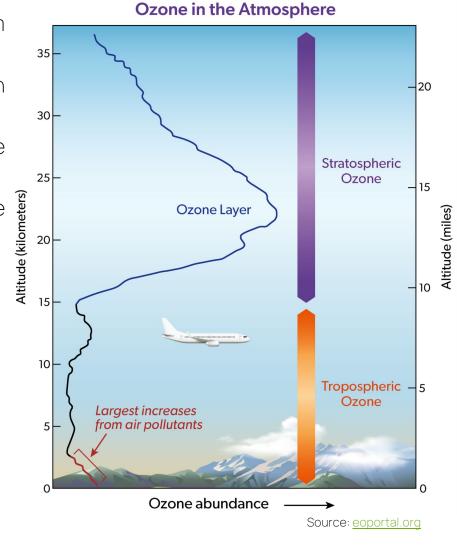

Advantages:

- Satellite-based data provide comprehensive spatial coverage.
- Temporal consistency ensures regular monitoring of pollutant trends.
- Improving spatial resolution.
- Satellites monitor trace gases (NO₂, CO, O₃, CH₄) and aerosols globally.
- Consistent data supports:
- Detecting pollution sources.
- Analyzing trends over time.
- Overpass time polar-orbiting (1-2 days) and geostationary (continuous daytime) satellites.

Limitations:

- Night require sunlight.
- Clouds and smoke most instruments are blocked.
- "Nose Level" measure the atmosphere, not just surface.




https://appliedsciences.nasa.gov/

Remote Sensing as a Solution – column products

- Total Column: The total amount of a gas (e.g., NO₂) integrated vertically from the Earth's surface to the top of the atmosphere.
- **Tropospheric Column**: The portion of the total column that is located within the troposphere, where most air pollution and weather phenomena occur.
- Stratospheric Column: The portion of the total column that resides in the stratosphere, typically dominated by background NO₂ from natural processes.
- Slant Column: The total amount of a gas measured along the satellite sensor's line of sight before applying atmospheric corrections.

More details for Sentinel- 5p processing can be found <u>here</u>.

Overview of Satellite Missions and Data Repositories

Satellite Missions for Air Quality Monitoring

Sentinel-5P (TROPOMI):

Specialized in atmospheric monitoring. Detects NO₂, CO, SO₂, CH₄, aerosols, and more. Spatial resolution (~5.5x3 km per pixel).

MODIS (Aqua/Terra):

Monitors atmospheric aerosol properties (e.g., Aerosol Optical Depth).

Wide swath coverage (~2330 km).

Spatial resolution (~10x10 km per pixel).

OMI (Aura):

Measures ozone, NO₂, and other trace gases. Heritage mission, supporting long-term data continuity.

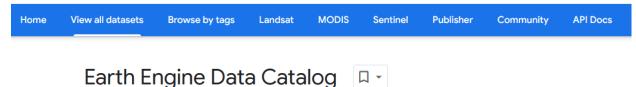
Mission	Key Focus	Resolution	Applications
Sentinel-5P	Trace gases	~5.5x3 km	Urban air quality
MODIS	Aerosols	~10 km	Global pollution
OMI (Aura)	Ozone, NO ₂	~13 km	Long-term trends

How to Access Satellite Data for Air Quality

Copernicus Data Space Ecosystem:

Primary source for Sentinel-5P products. Offers NO₂, CO, O₃ data in NetCDF format. Access it from <u>here</u>.

NASA Earthdata:


Data from MODIS, OMI, and other missions. Easy integration with tools like Python. Access it from <u>here</u>.

Google Earth Engine (GEE):

Cloud-based geospatial platform. Provides Sentinel-5P and MODIS datasets. Allows real-time visualization and analysis. Access it from <u>here</u>.

Earth Engine Data Catalog

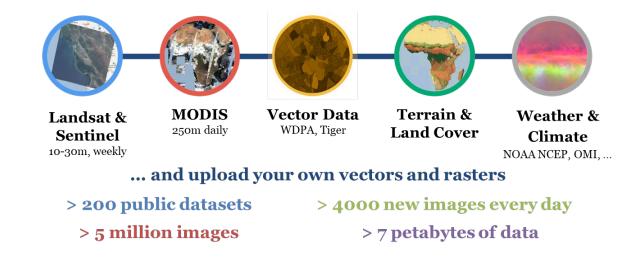
APIs and Tools for Air Quality Analysis

Copernicus APIs:

Programmatic access to Copernicus data (<u>API</u> and <u>JupyterHub</u>). Useful for automated workflows.

Google Earth Engine API:

Simplifies integration of Sentinel and MODIS datasets. Supports JavaScript and Python (via <u>ee package</u>).


Other Tools:

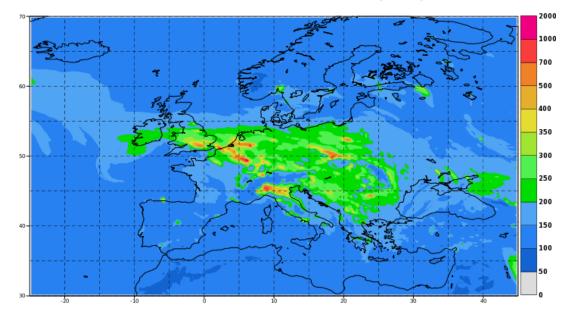
ESA SNAP Toolbox: Preprocess Sentinel data. Python libraries (e.g., <u>xarray</u>, <u>geemap</u>).

Infrastructure

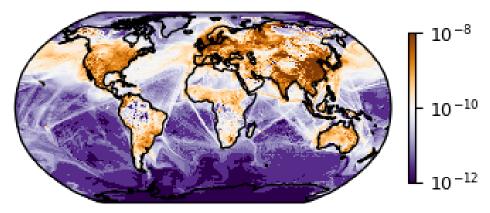
Infrastructure by Sumit Saengthong from NounProject.com

Other Copernicus Services for Air Quality

Copernicus Atmosphere Monitoring Service (<u>CAMS</u>**)**: Provides near-real-time data and forecasts.


Use cases:

- air quality monitoring,
- emission tracking,
- climate modeling.


Examples of products:

- Global atmospheric composition forecasts,
- European air quality forecasts.

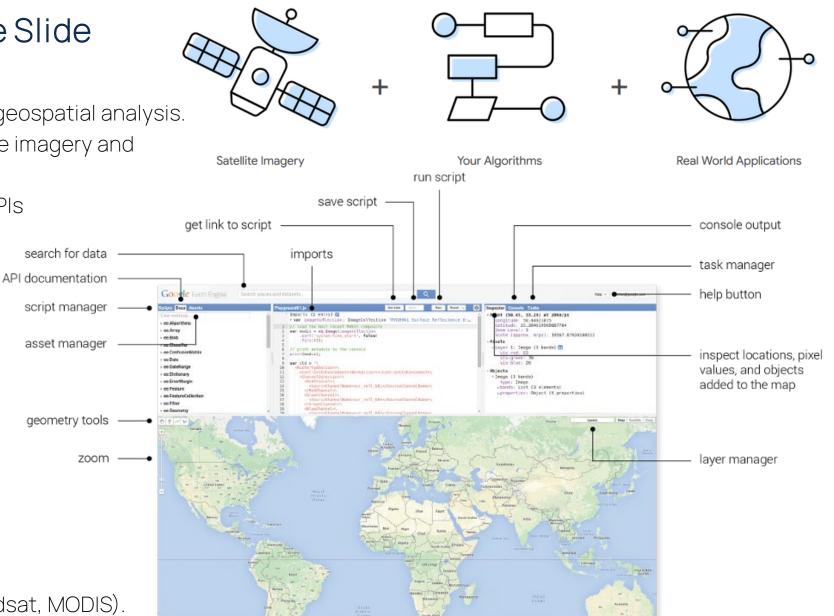
Monday 19 November 2018 00UTC CAMS Forecast t+096 VT: Friday 23 November 2018 00UTC Model: ENSEMBLE Height level: Surface Parameter: Carbon Monoxide [µg/m3]

CAMS nitrogen dioxide forecast 22 Feb 2021

Brief Introduction to Google Earth Engine

Google Earth Engine in One Slide

What is GEE?


- A cloud-based platform for large-scale geospatial analysis.
- Provides access to petabytes of satellite imagery and environmental datasets.
- Offers a browser-based interface and APIs

How? - JavaScript

- Primary language for GEE's Code Editor.
- Enables fast, interactive geospatial processing and visualization.

Key Features:

- Simple scripting for tasks like filtering, mapping, and reducing datasets.
- Real-time rendering of geospatial outputs (e.g., maps, charts).
- Creation of apps.
- Built-in dataset catalogs (Sentinel, Landsat, MODIS).

Hands-on

Before we start

Registration - go to <u>https://earthengine.google.com/</u> and in upper right corner select *Get Started* and follow the instructions

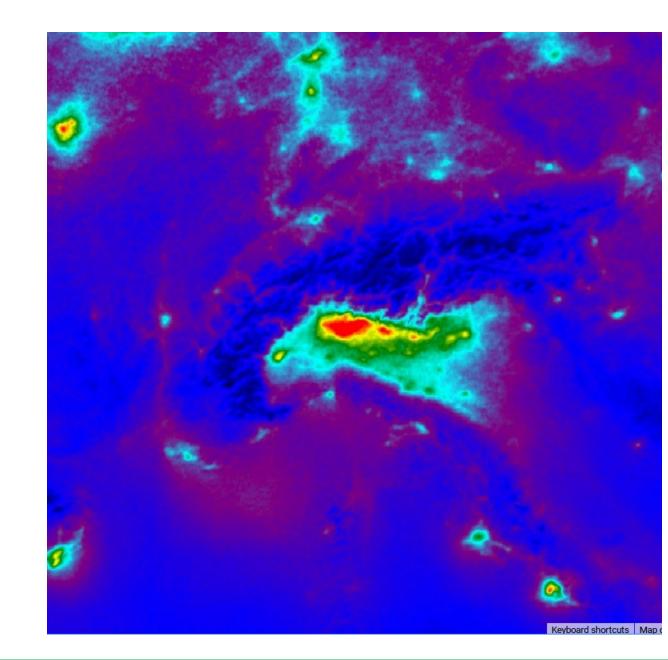
Setup Cloud Project – if it is not set and you haven't done it, follow the instructions <u>*Transition to use Cloud projects*</u>

<u>Get Started with Earth Engine guide</u> ← strongly recommended

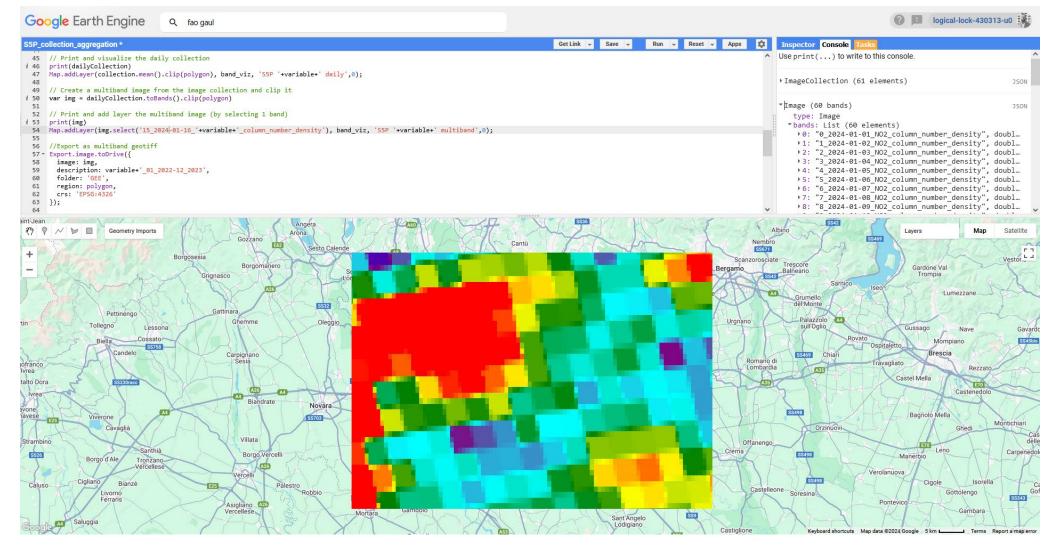
Google Earth Engine Developers – helpful group to seek support

Additional resources - Earth Engine 101 - Introduction to the API, Cloud-Based Remote Sensing with Google Earth Engine

Today's scripts are available in my <u>GEE repository</u> <u>https://bit.ly/GSW_2025_GEE</u>

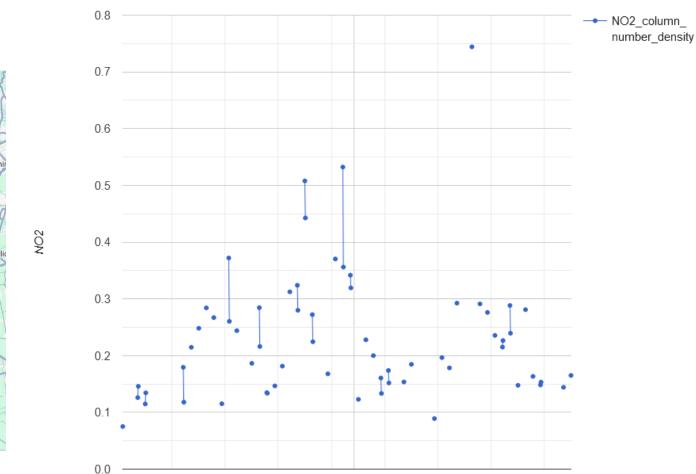

Not a "Hello World" example

```
var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2')
.select('tropospheric_NO2_column_number_density')
.filterDate('2024-01-01', '2024-12-31')
```


```
var image = collection.mean()
var band_viz = {
  min: 0,
  max: 0.00010,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
```

Map.addLayer(image, band_viz, 'S5P N02'); Map.setCenter(9.1731, 45.4639, 6);

Hello NO2 script


Image daily aggregation

S5P_collection_aggregation script

Time-series for specific region

February 2024

12

19

26

S5P_collection_aggregation script

8

15

22

NO2-over-time

Vasil Yordanov I Air Quality

Any questions?

SPACE IT UP! Grant Agreement ASI n. 2024-5-E.0 [CUP Master I53D2400006000]

Thank you for your attention

Vasil Yordanov, PhD (<u>vasil.yordanov@polimi.it</u>) Department of Civil and Environmental Engineering Politecnico di Milano

